Sea surface temperature and heat budget variability in ECCO2

Holger Brix (UCLA)
Dimitris Menemenlis (JPL)
ECCO2 meeting, Boston
23 September 2008

SST anonalies

Mixed layer heat budget and SST

$$\frac{\partial T}{\partial t} = \frac{1}{h} \frac{Q}{\rho C_p} - \frac{1}{h} \frac{\partial h}{\partial t} \Delta T + a \text{ diffusion}$$

Project Questions:

- Which processes dominate on which temporal and spatial scales?
- Does spatial averaging matter?
- How big are the associated errors?

Mixed layer heat budget and SST

$$\frac{\partial T}{\partial t} = \frac{1}{h} \frac{Q}{\rho C_p} - \frac{1}{h} \frac{\partial h}{\partial t} \Delta T + a \text{ diffusion}$$

Approach:

- Choose three oceanic regions (approx. 5°x5°) in the North Pacific Ocean:
 - the subtropical gyre
 - an upwelling region off the US West Coast
 - a dynamically active area in the Kuroshio region
- Choose different frequency bands:
 - 6 hourly
 - Daily
 - Monthly

SST variability AVHRR ECC02

US West Coast

North of Hawaii

East of Japan

SST anomalies AVHRR ECCO2

US West Coast

North of Hawaii

East of Japan

Mixed layer heat budget and SST

$$\frac{\partial T}{\partial t} = \frac{1}{h} \frac{Q}{\rho C_p} - \frac{1}{h} \frac{\partial h}{\partial t} \Delta T + a \text{ diffusion}$$

Approach – part 2:

 In a first step calculate ∂T/∂t and the first two terms on the right hand side – treat advection and diffusion as residual

"Technical" questions:

- Which mixed layer depths?
 - KPPmld vs. KPPhbl
 - Other definitions
- Which ΔT?